

UI Software Organization

The user interface
l From previous class:

l Generally want to think of the “UI” as only one component of the
system
l Deals with the user
l Separate from the “functional core” (AKA, the “app”)

2

Separation of Concerns
l There are good software engineering reasons to do this

l Keep UI code separate from app code
l Isolate changes
l More modular implementation
l Different expertise needed
l Don’t want to iterate the whole thing

3

In practice, very hard to do...
l More and more interactive programs are tightly coupled to the UI

l Programs structured around UI concepts/flow
l UI structure “sneaks into” application

l Not always bad...
l Tight coupling can offer better feedback/performance

4

Separation of concerns is a
central theme of UI organization
l A continual challenge
l A continual tension and tradeoff

l Real separation of UI from application is almost a lost cause

5

Conceptual Overview of the UI

6

Input

Output

UI
Core

AppApp
Interface

UI Toolkit

Basic UI Flow

7

Input

Output

UI
Core

AppApp
Interface

UI Toolkit

How would you architect this?
l Tempting to architect systems around these boxes

l One module for input, one for output, etc.
l Has been tried (“Seeheim model”)
l Didn’t work well

8

Why “Big Box” architectures
don’t work well
l Modern (“direct manipulation”) interfaces tend to be collections of

quasi-independent agents
l Each interactor (“object of interest” on the screen) is separable
l Example: an on-screen button

l Produces “button-like” output
l Acts on input in a “button-like” way
l Etc.

9

Leads to object-based
architectures
l Each on-screen interactor corresponds to an object instance

l Common methods for
l Drawing output (button-like appearance)
l Handling input (what happens when I click)

l Classes are organized into a subclassing hierarchy
l Typically a top-level “Component” or “Widget” class that describes basic interactor

capabilities
l Leaf-node classes for the things you actually see on the screen (buttons, scrollbars, etc.)

l Intermediate classes for common behaviors (text or mouse processing)

l Objects are organized hierarchically at runtime
l Normally reflecting spatial containment relationships
l NOTE: different than class hierarchy created at development time

l Interactor trees

10

Challenge: maintaining separation
of concerns
l Trick is coming up with a separation that works quickly, simply, and

extensibly
l Even a single button may be hopelessly complex (pluggable looks-and-

feels anyone?)
l Needs to be extensible to new interactors
l What’s the right factoring for all this stuff?

l Will see some strategies later
l Basically: common O-O patterns to manage complexity

11

UI Toolkits
l System to provide development-time and runtime support for UIs

l Core functionality
l Input & output handling
l Connecting to the application

l Also: specific interaction techniques
l Library of interactors
l Look and feel (sometimes pluggable)

12

Categories of users
l Consumer

l End-user, albeit indirectly

l Programmers
l Interface designer
l Application builder
l Toolkit implementer/maintainer
l Interactor writer
l Tool builder
l Expert end-user (through scripting)

13

Toolkit functionality in detail
(Roadmap of topics)
l Core functions

l Hierarchy management
l Create, maintain, tear down tree of interactor objects

l Geometry management
l Dealing with coordinate systems
l On-screen bounds of interactors

l Interactor status/information management
l Is this interactor visible? Is it active?

14

Toolkit functionality in detail
l Output

l Layout
l Establishing the size and position of each object
l Both initially, and after a resize

l (Re)drawing
l Damage management

l Knowing what needs to be redrawn
l Localization and customization

l We won’t talk much about this...

15

Toolkit functionality in detail
l Input

l Picking
l Figuring out what interactors are “under” a given screen point

l Event dispatch, translation, handling
l This is where a lot of the work goes

16

Toolkit functionality in detail
l Application interface

l How the UI system connects with application code
l Callbacks
l Command objects
l Undo models
l ...

17

Example: Java Swing
l All functions of interactors encapsulated in base class

l javax.swing.JComponent
l All objects on-screen inherit from this class

l Terminology:
l interactor, widget, component, control, ...

18

Standard object-oriented
approach
l Base class (or interface) defines the set of things that every

interactor must do
l e.g., public void paintComponent(Graphics g);

l Subclasses provide specific specialized implementations
l Do the right drawing, input, etc., to be a button vs. a slider vs. ...

19

JComponent API defines methods
for
l Hierarchy management
l Geometry management
l Object status management
l Layout
l (Re)drawing
l Damage management
l Picking

20

In subclasses and other parts of
the toolkit:
l Input dispatch and handling
l Application interface
l Pluggable looks and feels
l Undo support
l Accessibility

21

Hierarchy Management
l Swing interfaces are trees of components
l To make something appear, you must add

it to the tree
l Swing takes care of many of the details

from there
l Screen redraw
l Input dispatch

22

JFrame

JPanel

JButtonJButton JButton

Hierarchy Management
l Lots of methods for manipulating the tree

l add(), remove(), removeAll(), getComponents(), getComponentCount(),
isAncestorOf(), ...

l Common mistake
l If nothing shows up on the screen, make sure you’ve added it!

23

Geometry Management
l Every component maintains its own geometry:

l Bounding box: getX(), getY(), getWidth(), getHeight()
l X,Y are relative to parent
l i.e., 0,0 is at parent’s top left corner
l Other operations: setSize(), setLocation(), setBounds(), getSize(),

getLocation(), getBounds()

l All drawing happens within that box
l System clips to bounding box
l Including output of children!

l Drawing is relative to top-left corner
l Each component has its own coordinate system

24

Object Status
l Each component maintains information about its “state”

l isEnabled(), setEnabled()
l isVisible(), setVisible()

l Lots of other methods of lesser importance

25

Each component handles:
l Layout (we’ll talk about this later...)
l Drawing

l Each component knows how to (re)create its appearance based on its
current state

l Responsible for painting three items, in order:
1. Component

2. Borders

3. Children

l paintComponent(), paintBorder(), paintChildren()
l These are the only places to draw on the screen!!!
l Automatically called by JComponent’s paint() method, which is itself

called by the Swing RepaintManager (figures out “damaged” regions)

26

Damage Management
l Damage: areas of a component that need to be redrawn

l Sometimes: computed automatically by Swing RepaintManager
l e.g., if another window is dragged over your component, or your

component is resized

l Other times: you need to flag damage yourself to tell the system that
something in your internal state has changes and your on-screen image
may not be correct
l e.g., your component needs to change the color of a displayed label

l Managing damage yourself:
l repaint(Rectangle r)
l Puts the indicated rectangle on the RepaintManager’s queue of regions

to be redrawn

l Terminology: damage is not a Swing term; generic
27

Picking
l Determine if a point is “inside” a component

l contains(int x, int y)
l Is the point inside the bounding box of this component (uses local

coordinate system of component)

l Terminology: likewise, picking is not a Swing term

28

Other stuff
l Input (we’ll talk about this later...)
l Application interface

l Glue between component and application functionality
l Not directly in component, but there is a convention for how to

associate your functionality with a component
l Callbacks: you register code with a component to say “call this code

when something happens”

l Terminology: Swing uses the term listener for a piece of application
code that will be called back in response to something happening
l The code “listens for” something happening

29

Listeners
l Any given component may have multiple situations in which it invokes

a listener
l Button pressed, list scrolled, list item selected
l Different types of listeners representing different types of things happening

l Therefore, each component has a list of listeners for each situation
l Standardized names for accessing these lists

l addPropertyChangeListener(), getPropertyChangeListeners(),
removePropertyChangeListener()

l addActionListener(), getActionListeners(), removeActionListener()

30

More on listeners
l There is generally a separate interface for each type of listener

l PropertyChangeListener
l ActionListener

l Your code must implement the appropriate listener interface and be
registered with the list of appropriate list of listeners on the
appropriate component
l Example: button press causes listeners on the button’s ActionListener

list to be called
l Define your code so that it implements ActionListener
l Register it with the button using addActionListener()

31

Events
l Most listener interfaces define methods that take an event object that

describes what just happened
l Separate classes of events for each listener interface

l ActionListener: ActionEvent
l MouseListener: MouseEvent

l Passed as a parameter containing details of what happened
l e.g., MouseListener: mouse coordinates, whether it was pressed,

released, etc.

32

