Ul Software Organization

Georgia
Tech @

—




Georgia
Tech

The user interface

® From previous class:

Generally want to think of the “UI”" as only one component of the
system

Deals with the user

Separate from the “functional core” (AKA, the “app”)




Separation of Concerns

Georgia
Tech

® There are good software engineering reasons to do this

Keep Ul code separate from app code
Isolate changes

More modular implementation
Different expertise needed

Don’t want to iterate the whole thing

&




Georgia
Tech

In practice, very hard to do...

&

® More and more interactive programs are tightly coupled to the Ul

Programs structured around Ul concepts/flow
Ul structure “sneaks into” application
® Not always bad...

Tight coupling can offer better feedback/performance




Separation of concerns is a Georgia
central theme of Ul organization

® A continual challenge

® A continual tension and tradeoff

® Real separation of Ul from application is almost a lost cause

&




Georgla @

Conceptual Overview of the Ul

App
Interface

Ul Toolkit




Basic Ul Flow

Georgla @

Ul Toolkit




How would you architect this!?

® Tempting to architect systems around these boxes
One module for input, one for output, etc.
Has been tried (“Seeheim model”)

Didn’t work well

Georgia
Tech




Why “Big Box™ architectures Ge%g.::cig@
don’t work well )

® Modern (“direct manipulation”) interfaces tend to be collections of
quasi-independent agents

Each interactor (“object of interest” on the screen) is separable
Example: an on-screen button

Produces “button-like” output
Acts on input in a “button-like” way

Etc.




Leads to object-based Georgia
architectures

[———
000000

® Each on-screen interactor corresponds to an object instance

Common methods for

Drawing output (button-like appearance)

Handling input (what happens when | click)

® C(Classes are organized into a subclassing hierarchy

Typically a top-level “Component” or “Widget” class that describes basic interactor
capabilities

Leaf-node classes for the things you actually see on the screen (buttons, scrollbars, etc.)
Intermediate classes for common behaviors (text or mouse processing)

® Objects are organized hierarchically at runtime
Normally reflecting spatial containment relationships

NOTE: different than class hierarchy created at development time

e |Interactor trees

10




Challenge: maintaining separation Ge%gcig@
of concerns :

® Trick is coming up with a separation that works quickly, simply, and
extensibly

Even a single button may be hopelessly complex (pluggable looks-and-
feels anyone?)

Needs to be extensible to new interactors
What'’s the right factoring for all this stuff?

® Will see some strategies later

® Basically: common O-O patterns to manage complexity

11




O
X
_ 'YX X
Georgia eo0o
Tech

Ul Toolkits

® System to provide development-time and runtime support for Uls
Core functionality
Input & output handling
Connecting to the application
® Also: specific interaction techniques
Library of interactors

Look and feel (sometimes pluggable)

12




Categories of users

® Consumer

End-user, albeit indirectly

® Programmers
Interface designer
Application builder
Toolkit implementer/maintainer
Interactor writer

Tool builder
Expert end-user (through scripting)

Georgia
Tech

&

13




Toolkit functionality in detail Georgia
ech
(Roadmap of topics)

® Core functions
Hierarchy management
Create, maintain, tear down tree of interactor objects
Geometry management
Dealing with coordinate systems
On-screen bounds of interactors
Interactor status/information management

Is this interactor visible? Is it active?

[———

14




Toolkit functionality in detail

® OQOutput
Layout

Establishing the size and position of each object

Both initially, and after a resize
(Re)drawing
Damage management

Knowing what needs to be redrawn
Localization and customization

We won’t talk much about this...

Georgia
Tech

15




Georgia
Tech

Toolkit functionality in detail

® Input
Picking
Figuring out what interactors are “under” a given screen point
Event dispatch, translation, handling

This is where a lot of the work goes

16




Toolkit functionality in detail

® Application interface

How the Ul system connects with application code
Callbacks
Command objects

Undo models

Georgia
Tech

&

17




Georgia
Tech

Example: Java Swing

® All functions of interactors encapsulated in base class
javax.swing.JComponent

All objects on-screen inherit from this class

® Terminology:

interactor, widget, component, control, ...

18




Standard object-oriented Ge%;gciﬁ@ 0o’
approach ik

® Base class (or interface) defines the set of things that every
interactor must do

e.g., public void paintComponent(Graphics g);
® Subclasses provide specific specialized implementations

Do the right drawing, input, etc., to be a button vs. a slider vs. ...

19




JComponent API defines methodsae

for

® Hierarchy management

® Geometry management

® Object status management
® Layout

® (Re)drawing

® Damage management

® Picking

orgia
Te%h

[———

20




In subclasses and other parts of Ge%g.::cig@
the toolkit: -

® Input dispatch and handling
® Application interface

® Pluggable looks and feels

® Undo support

® Accessibility




Tech

Georgia @

Hierarchy Management

® Swing interfaces are trees of components

® To make something appear, you must add
it to the tree

® Swing takes care of many of the details
from there

Screen redraw

Input dispatch

22




Georgia
Tech

Hierarchy Management

® [ots of methods for manipulating the tree

add(), remove(), removeAll(), getComponents(), getComponentCount(),
isAncestorOf(), ...

® Common mistake

If nothing shows up on the screen, make sure you’ve added it!

23




Georgia
Tech

Geometry Management

® Every component maintains its own geometry:
Bounding box: getX(), getY(), getWidth(), getHeight()

X,Y are relative to parent

i.e., 0,0 is at parent’s top left corner

Other operations: setSize(), setLocation(), setBounds(), getSize(),

getLocation(), getBounds()
All drawing happens within that box

System clips to bounding box

Including output of children!
Drawing is relative to top-left corner

Each component has its own coordinate system

@

24




Georgia
Tech

Object Status

® Each component maintains information about its “state”
isEnabled(), setEnabled()
isVisible(), setVisible()

® |ots of other methods of lesser importance

25




00
000
0000
Georgia 000
Tech it
Each component handles:

® Layout (we'll talk about this later...)
® Drawing

Each component knows how to (re)create its appearance based on its
current state

Responsible for painting three items, in order:

|. Component
2. Borders
3. Children

paintComponent(), paintBorder(), paintChildren()
These are the only places to draw on the screen!!!

Automatically called by JComponent’s paint() method, which is itself
called by the Swing RepaintManager (figures out “damaged” regions)

26




Tech

Georgia @

Damage Management

® Damage: areas of a component that need to be redrawn

Sometimes: computed automatically by Swing RepaintManager

e.g., if another window is dragged over your component, or your
component is resized

Other times: you need to flag damage yourself to tell the system that
something in your internal state has changes and your on-screen image
may not be correct

e.g., your component needs to change the color of a displayed label

® Managing damage yourself:
repaint(Rectangle r)

Puts the indicated rectangle on the RepaintManager’s queue of regions
to be redrawn

® Terminology: damage is not a Swing term; generic
27




Georgia
Tech

Picking

® Determine if a point is “inside” a component
contains(int x, int y)

Is the point inside the bounding box of this component (uses local
coordinate system of component)

® Terminology: likewise, picking is not a Swing term

28




Georgia
Tech @

Other stuff

® |nput (we'll talk about this later...)

® Application interface
Glue between component and application functionality

Not directly in component, but there is a convention for how to
associate your functionality with a component

Callbacks: you register code with a component to say “call this code
when something happens”

® Terminology: Swing uses the term listener for a piece of application
code that will be called back in response to something happening

The code “listens for”” something happening

29




000
0000
o000
Georgia 'YX
Tech ot
. o
Listeners

® Any given component may have multiple situations in which it invokes
a listener

Button pressed, list scrolled, list item selected

Different types of listeners representing different types of things happening
® Therefore, each component has a list of listeners for each situation
® Standardized names for accessing these lists

addPropertyChangelListener(), getPropertyChangeListeners(),
removePropertyChangeListener()

addActionListener(), getActionListeners(), removeActionListener()

30




Tech

Georgia @

More on listeners

® There is generally a separate interface for each type of listener
PropertyChangelistener
ActionListener

® Your code must implement the appropriate listener interface and be

registered with the list of appropriate list of listeners on the
appropriate component

Example: button press causes listeners on the button’s ActionListener
list to be called

Define your code so that it implements ActionListener

Register it with the button using addActionListener()

31




Georgia
Tech &

Events

® Most listener interfaces define methods that take an event object that
describes what just happened

® Separate classes of events for each listener interface
ActionListener:ActionEvent
MouseListener: MouseEvent

® Passed as a parameter containing details of what happened

e.g., MouselListener: mouse coordinates, whether it was pressed,
released, etc.

32




