
  

 
Damage Management & Layout
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Damage management

 Need to keep track of parts of the screen that need update
 interactor has changed appearance, moved, appeared, 

disappeared, etc.
 done by “declaring damage”

 each object responsible for telling system when part of its 
appearance needs update
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Damage management

 Example: in Swing done via a call to repaint()
 takes a rectangle parameter
 Adds the specified region to the RepaintManager’s dirty list

 list of regions that need to be redrawn
 RepaintManager schedules repaints for later, can collapse 

multiple dirty regions into a few larger ones to optimize
 When scheduled repaint comes up, RepaintManager calls

component’s paintImmediately() method, which calls 
paintComponent(), paintChildren(), paintBorders()
 You generally never want to call this yourself
 Generally, seldom need to work with RepaintManager 

directly
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Damage Management

 Can optimize somewhat
 Multiple rectangles of damage
 Knowing about opaque objects

 But typically not worth the effort



  

Damage Management in Swing
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JComponent RepaintManager

repaint() addDirtyRegion()

paintImmediately()

paintComponent()
paintBorder()

paintChildren()

Event 
Dispatch 
Queue
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Typical overall “processing cycle”

loop forever

wait for event then dispatch it

➡causes actions to be invoked 
and/or update interactor 
state

➡typically causes damage

if (damaged_somewhere)

layout
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Layout

 Deciding size and placement of every object
 easiest version: static layout 

 objects don’t move or change size
 easy but very limiting

 hard to do dynamic content

 only good enough for simplest cases
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Dynamic layout

 Change layout on the fly to reflect the current situation
 Need to do layout before redraw

 Can’t be done e.g., in paintComponent()
 Why?
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Dynamic layout

 Change layout on the fly to reflect the current situation
 Need to do layout before redraw

 Can’t be done e.g., in paintComponent()
 Because you have to draw in strict order, but layout (esp. 

position) may depend on size/position of things not in order 
(drawn after you!)



  

Layout in Swing
 invalidate() method

 Called on a container to indicate that its children need to be laid out

 Called on a component to indicate that something about it has changed that 
may change the overall layout (change in size, for example)

 validate() method
 Starts the process that makes an invalid layout valid--recomputes sizes and 

positions to get correct layout
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“Issues” with Swing validation
 invalidate() is often called automatically

 e.g., in response to changes to components’ state

 ... but not always
 e.g., if a JButton’s font or label changes, no automatic call to invalidate()

 Mark the button as changed by calling invalidate() on it

 Tell the container to redo layout by calling validate() on it

 In older versions of Swing you had to do this by hand
 Newer versions (post 1.2) add a shortcut: revalidate()

 Invalidates the component you call it on

 Begins the process of validating the layout, starting from the appropriate parent 
container

 Validation also uses the RepaintManager

11



  

Layout Validation in Swing
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JComponent RepaintManager

revalidate() addInvalidComponent()

validate()
Event 

Dispatch 
Queue

Container
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Layout with containers

 Containers (parent components) can control size/position 
of children
 example: rows & columns
 Two basic strategies

 Top-down (AKA outside-in)
 Bottom-up (AKA inside-out)
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Top-down or outside-in layout

 Parent determines layout of children
 Typically used for position, but sometimes size
 Example?
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Top-down or outside-in layout

 Parent determines layout of children
 Typically used for position, but sometimes size
 Dialog box OK / Cancel buttons

 stays at lower left

OK Cancel



  

16

Bottom-up or inside-out layout

 Children determine layout of parent
 Typically just size
 Example?
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Bottom-up or inside-out layout

 Children determine layout of parent
 Typically just size
 Shrink-wrap container

 parent just big enough to hold all children
 e.g., pack() method on JWindow and JFrame

 Resizes container to just big enough to accommodate 
contents’ preferredSizes
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Which one is better?
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Neither one is sufficient

 Need both
 May even need both in same object

 horizontal vs. vertical
 size vs. position (these interact!)

 Need more general strategies



  

Layout Policies in Swing
 Swing layout policies are (generally) customizable
 Some containers come with a “built-in” layout policy

 JSplitPane, JScrollPane, JTabbedPane

 Others support “pluggable” policies through LayoutManagers
 LayoutManagers installed in Containers via setLayout()

 Two interfaces (from AWT): LayoutManager and LayoutManager2

 Determines position and size of each component within a container

 Looks at components inside container:
 Uses getMinimumSize(), getPreferredSize(), getMaximumSize()

 ... but is free to ignore these

 Example LayoutManagers:
 FlowLayout, BorderLayout, GridLayout, BoxLayout, ...

20



  

Layout Policies in Swing
 Each LayoutManager is free to do what it wants when layout out 

componens
 Can ignore components’ min/preferred/max sizes

 Can ignore (not display) components at all

 Generally, most will look at children’s requests and then:
 Size the parent component appropriately

 Position the children within that component

 So, top-down with input from child components

21
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More general layout strategies

 Boxes and glue model
 Springs and struts model
 Constraints
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Boxes and glue layout model

 Comes from the TeX document processing system 
 Brought to UI work in Interviews toolkit (C++ under X-

windows)
 See “Composing User Interfaces with Interviews”
 Tiled composition (no overlap)

 toolkit has other mechanisms for handling overlap
 glue between components (boxes)
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Boxes and glue layout model

 2 kinds of boxes: hbox & vbox
 do horiz and vert layout separately

 at separate levels of hierarchy
 Each component has

 natural size
 min      size
 max     size
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Box sizes

 Natural size
 the size the object would normally like to be 

 e.g., button: title string + border
 Min size

 minimum size that makes sense 
 e.g. button may be same as natural

 Max size ...
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Boxes and glue layout model

 Each piece of glue has:
 natural size
 min      size (always 0)
 max     size (often “infinite”)
 stretchability factor (0 or “infinite” ok)

 Stretchability factor controls how much this glue 
stretches compared with other glue
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Example (Paper: p13, fig 4&5)
 Two level composition

 vbox
 middle glue twice as stretchable as top and bottom

 hbox at top
 right glue is infinitely stretchable

 hbox at bottom
 left is infinitely stretchable
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How boxes and glue works

 Boxes (components) try to stay at natural size
 expand or shrink glue first
 if we can’t fit just changing glue, only then expand or shrink 

boxes
 Glue stretches / shrinks in proportion to stetchability 

factor
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Computing boxes and glue layout

 Two passes: 
 bottom up then top down

 Bottom up pass:
 compute natural, min, and max sizes of parent from 

natural, min, and max of children
 natural = sum of children’s natural
 min = sum of children’s min
 max = sum of children’s max
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Computing boxes and glue layout

 Top down pass:
 window size fixed at top
 at each level in tree determine space overrun (shortfall)
 make up this overrun (shortfall) by shrinking (stretching)

 glue shrunk (stretched) first
 if reaches min (max) only then shrink (stretch 

components)
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Top down pass (cont)

 Glue is changed proportionally to stretchability factor
 example: 30 units to stretch

 glue_1 has factor 100
 glue_2 has factor 200

 stretch glue_1 by 10
 stretch glue_2 by 20

 Boxes changed evenly (within min, max)
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What if it doesn’t fit?

 Layout breaks
 negative glue 
 leads to overlap
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Springs and struts model

 Developed independently, but can be seen a simplification 
of boxes and glue model
 more intuitive (has physical model)

 Has struts, springs, and boxes
 struts are 0 stretchable glue
 springs are infinitely stretchable glue
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Springs and struts model

 Struts
 specify a fixed offset

 Springs
 specify area that is to take up slack
 equal stretchability

 Components (boxes)
 not stretchable (min = natural = max) 
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Constraints

 A more general approach
 General mechanism for establishing and maintaining 

relationships between things
 layout is one use
 several other uses in UI

 deriving appearance from data
 multiple view of same data
 automated semantic feedback
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General form: declare relationships

 Declare “what” should hold
 this should be centered in that
 this should be 12 pixels to the right of that
 parent should be 5 pixels larger than its children

 System automatically maintains relationships under change
 system provides the “how”
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You say what
System figures out how

 A very good deal 
 But sounds too good to be true
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You say what
System figures out how

 A very good deal 
 But sounds too good to be true

 It is: can’t do this for arbitrary things (unsolvable problem)
 Good news: this can be done if you limit form of 

constraints
 limits are reasonable
 can be done very efficiently
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Form of constraints

 For UI work, typically express in form of equations
 this.x = that.x + that.w + 5  

5 pixels to the right

 this.x = that.x + that.w/2 - this.w/2
centered

 this.w = 10 + max child[i].x + child[i].w
10 larger than children



  

The Power of Constraints

 this.x = that.x + that.w/2 - this.w/2
 What’s so cool about this?

 Power comes from dynamic computation of result
 Value isn’t just computed immediately
 Instead, saves references to objects involved in calculation
 When any operand changes, result value is automatically 

recomputed
 Express relationships declaratively
 Systems updates as necessary to preserve the constraints you’ve 

specified
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How would you express this?
 this.x = that.x + that.w/2 - this.w/2
 Remember, not programming language expression!

 Parsable strings
 c = new Constraint(“this.x = that.x + that.w/2 - this.w/2”)

 Nested function calls
 c = new Constraint(Equals(this.x, Add(this.x, Sub(Div(that.w, 2), Div(this.w, 2)))))

 Operator overloading
 If your language supports, it can make it look very like the example above

 Requires defining constraint objects, overloading common arithmetic operators

41
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Example: doing springs and struts 
with constraints

 First, what does this do?

Obj1

St1 St2

Sp1 Sp2

Obj2 Obj3

Parent
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Example: doing springs and struts 
with constraints

 First, what does this do?
 Obj1 and obj3 stay fixed distance from left and right edges
 Obj2 centered between them

Obj1

St1 St2

Sp1 Sp2

Obj2 Obj3

Parent
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Example: doing springs and struts 
with constraints

 Compute how much space is left
parent.slack = parent.w - (obj1.w + obj2.w + obj3.w + st1.w + st2.w)

Obj1

St1 St2

Sp1 Sp2

Obj2 Obj3

Parent
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Example: doing springs and struts 
with constraints

 Space for each spring
parent.sp_len = parent.slack / 2

Obj1

St1 St2

Sp1 Sp2

Obj2 Obj3

Parent
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Example: doing springs and struts 
with constraints

 A little better version
parent.num_sp = 2
if parent.num_sp == 0
        parent.sp_len = 0
else
        parent.sp_len = parent.slack / parent.num_sp

Obj1

St1 St2

Sp1 Sp2

Obj2 Obj3

Parent
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Example: doing springs and struts 
with constraints

 Now assign spring sizes
sp1.w = parent.sp_len
sp2.w = parent.sp_len

Obj1

St1 St2

Sp1 Sp2

Obj2 Obj3

Parent
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Example: doing springs and struts 
with constraints

 Now do positions left to right
st1.x= 0
obj1.x = st1.x + st1.w
sp1.x = obj1.x + obj1.w
...

Obj1

St1 St2

Sp1 Sp2

Obj2 Obj3

Parent
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Power of constraints

 If size of some component changes, system can  
determine new sizes for springs, etc.
 automatically
 just change the size that has to change, the rest “just 

happens”
 very nice property
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 Bigger example

 Suppose we didn’t want to fix number of children, etc. in 
advance
 don’t want to write new constraints for every layout
 instead put constraints in object classes (has to be a more 

general)
 in terms of siblings & first/last child
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Bigger (generalized) example

 First compute slack across arbitrary children
 Each strut, spring, and object:

 “before” means before considering this object
 “after” means after considering this object
 prev_sibling is a name that dynamically refers to the 

object before obj at the same level in the tree
if prev_sibling = null
        obj.sl_before = parent.w
else
        obj.sl_before = prev_sibling.sl_after
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Bigger (generalized) example

 For struts and objects:
 Roll forward, subtracting out object sizes from slack

obj.sl_after = obj.sl_before - obj.w
 For springs:

 Because they take up no space unless necessary, 
springs don’t detract from the slack

spr.sl_after = spr.sl_before
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Example of a “chained” computation

 Compute my value based on previous value
 Special case at beginning
 This now works for any number of children

 adding a new child dynamically not a problem
 Very common pattern
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Now compute number of springs

 For springs use:
if prev_sibling == null
        spr.num_sp = 1
else
        spr.num_sp = prev_sibling.num_sp + 1

 For struts and objects use:
if prev_sibling == null
        obj.num_sp = 0
else
        obj.num_sp = prev_sibling.num_sp
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Carry values to parent

• Propagate values computed in children up to the parent

• last_child is a dynamic reference that refers to the last child in 
the parent.

parent.num_sp = last_child.num_sp

parent.slack = last_child.sl_after

 Again, don’t need to know how many children
 Correct value always at last one
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Compute spring lengths

 Figure up the length we’ll use for each spring:

if parent.num_sp == 0
        parent.sp_len = 0
else
        parent.sp_len = parent.slack / parent.num_sp
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Set sizes of springs & do 
positions

 For springs use:
spr.w = parent.sp_len

 For all use:
if prev_sibling == null

        obj.x = 0

else

        obj.x = prev_sibling.x + prev_sibling.w
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More complex, but...

 Only have to write it once
 put it in various superclasses
 this is basically all we have to do for springs and struts 

layout (if we have constraints)
 can also do boxes and glue (slightly more complex, but not 

unreasonable)
 can write other kinds of layout and mix and match using 

constraints



  

Springs ‘n’ Struts in Swing
 Swing provides a basic constraint-based Springs’n’struts LayoutManager

 javax.swing.SpringLayout

 Allows simple arithmetic computation of constraints
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Dependency graphs

 Useful to look at a system of constraints as a 
“dependency graph”
 graph showing what depends on what
 two kinds of nodes (bipartite graph)

 variables (values to be constrained)
 constraints (equations that relate)
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Dependency graphs

 Example: A = f(B, C, D)

 Edges are dependencies

A
B
C
D

f
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Dependency graphs

 Dependency graphs chain together:     X = g( A, Y)

A
B
C
D

fX

Y

g
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Kinds of constraint systems

 Actually lots of kinds, but 2 major varieties used 
in UI work
 reflect kinds of limitations imposed

 One-Way constraints
 must have a single variable on LHS
 information only flows to that variable

 can change B,C,D system will find A
 can’t do reverse (change A …)
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One-Way constraints

 Results in a directed dependency graph:  
 A = f(B,C,D)

 Normally require dependency graph to be acyclic
 cyclic graph means cyclic definition

A
B
C
D

f
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One-Way constraints

 Problem with one-way: introduces an asymmetry
	 	 this.x = that.x + that.w + 5

 can move (change x) “that”, but not “this”
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Multi-way constraints

 Don’t require info flow only to the left in equation
 can change A and have system find B,C,D

 Not as hard as it might seem
 most systems require you to explicitly factor the equations 

for them
 provide B = g(A,C,D), etc.
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Multi-way constraints

 Modeled as an undirected dependency graph

 No longer have asymmetry
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Multi-way constraints

 But all is not rosy
 most efficient algorithms require that dependency graph be 

a tree (acyclic undirected graph)

                               OK

A
B
C
D

fX

Y

g
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Multi-way constraints

 But: A = f(B,C,D) & X = h(D,A)

Not OK because it has a cycle (not a tree)

A
B
C
D

fX h
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Another important issue

 A set of constraints can be:
 Over-constrained

 No valid solution that meets all constraints
 Under-constrained

 More than one solution
 sometimes infinite numbers
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Over- and under-constrained

 Over-constrained systems
 solver will fail
 isn’t nice to do this in interactive systems
 typically need to avoid this

 need at least a “fallback” solution



  

72

Over- and under-constrained

 Under-constrained
 many solutions
 system has to pick one
 may not be the one you expect
 example: constraint: point stays at midpoint of 

line segment
 move end point, then?
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Over- and under-constrained

 Under-constrained
 example: constraint: point stays at midpoint of line 

segment
 move end point, then?
 Lots of valid solutions

 move other end point
 collapse to one point
 etc.
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Over- and under-constrained

 Good news is that one-way is never over- or under-
constrained (assuming acyclic)
 system makes no arbitrary choices
 pretty easy to understand
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Over- and under-constrained

 Multi-way can be either over- or under-constrained
 have to pay for extra power somewhere
 typical approach is to over-constrain, but have a mechanism 

for breaking / loosening constraints in priority order
 one way: “constraint hierarchies”
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Over- and under-constrained

 Multi-way can be either over- or under-constrained
 unfortunately system still has to make arbitrary choices
 generally harder to understand and control 
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Implementing constraints

 Simple algorithm for one-way
 Need bookkeeping for variables
 For each keep:

 value	- the value of the var
 eqn       - code to eval constraint
 dep	- list of vars we depend on
 done
- boolean “mark” for alg
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Simple algorithm for one-way
 After any change:

// reset all the marks
for each variable V do

V.done = false;

// make each var up-to-date
for each variable V do

evaluate(V);
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Simple algorithm for one-way

evaluate(V):
if (!V.done)
V.done = true;
Parms = empty;
for each DepVar in V.dep do

Parms += evaluate(DepVar)
V.value = V.eqn(Parms)

return V.value
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Approach for multi-way 
implementation

 Use a “planner” algorithm to assign a direction to each 
undirected edge of dependency graph

 Now have a one-way problem
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Better algorithms

 “Incremental” algorithms exist for both one-way and 
multi-way
 don’t recompute every variable after every (small) change
 (small) partial changes require (small) partial updates


