
Some Advanced Topics in  
Processing



CS 6452: Prototyping Interactive Systems

Getting Stuff In and Out of Processing

• Exporting your sketch as a stand-alone application 
• Select File -> Export Application 
• Create an app for your platform 
• Option to bundle Java Runtime Environment 

• More likely your code will run the same as 
on your computer 

• Resulting app is ~100MB larger! 
• Caution: don’t have a method named 

main() in your sketch

2



CS 6452: Prototyping Interactive Systems

Getting Stuff In and Out of Processing

• Importing libraries 
• Sketch -> Import Library… -> Add 

Library… 
• Lets you select from libraries that are 

known to the Processing developers 
• Can add libraries “manually” also 

• Download, put them under the 
“libraries” folder in your sketch path

3



CS 6452: Prototyping Interactive Systems

Getting Stuff In and Out of Processing

• The data folder 
• Functions that deal with images and 

files (e.g., loadImage() and loadString() 
look for files inside a folder named 
data, inside your sketch’s folder 

• E.g., String[] lines = loadStrings(“foo.txt”); 
• Expects data/foo.txt

4



Getting set up for HW4

• Download Unfolding Maps 
• IMPORTANT: Use the Beta version on t-

square, not the one from the website! 
• Un-zip and install under the “libraries” folder 
• Restart processing 

• Grab the tweets.json file 
• Create, name, and save your HW4 sketch 
• put tweets.json under data under your 

sketch’s folder

5



Using Custom Renderers

• Most programs never need to worry about this, but… 
• Can set up different renderers that tell Processing 

how to optimize graphics. 
• Unfolding Maps works best with the 2D renderer 

• In your program: size(400, 400, P2D); 
• Accelerated through OpenGL 
• Faster, but less accurate (we want fast for HW4) 

• (There’s also a P3D renderer that makes 3D graphics 
run better.)

6



Using JSON from Processing
• Processing has JSON support similar to Python’s 

• JSONObject obj = loadJSONObject(“filename.json”)

• Once you have a JSON object, you can pull out the data 
associated with specific attributes 

• One difference from the Python libraries is that you have to 
know the type of the data you’re accessing 

• String s = obj.getString(“text”);  // type of data is String
• int i = obj.getString(“count”);    // type of data is int

• For data that is itself a JSON object (like a Python dictionary), use 
getJSONObject() 
• JSONObject userObj = obj.getJSONObject(“user”);

• For list data, use getJSONArray() then access via index 
• JSONArray statuses = obj.getJSONArray(“statuses”);
• JSONObject s = statuses.getJSONObject(0);

7



Getting Started with Unfolding

• Sketch -> Import Library 
• (If Unfolding is not there, you probably 

made a mistake installing it in the 
libraries folder)

8



Simple Maps

• Define a new map variable: 
• UnfoldingMap map;

• In your setup() function, create a new map 
and add the default event handler to the 
map 

void setup() {
  size(800, 600, P2D);
  map = new UnfoldingMap(this);
  MapUtils.createDefaultEventDispatcher(this, map);
}

9



Simple Maps

• In your draw() function, tell the map to 
draw itself (O-O!) 
• UnfoldingMap map; 

void draw() {
  map.draw();
}

• Try it! 

10



A Tip…

• Map data can be big.  
• Preferences -> Increase maximum 

available memory 
• 1024MB may be a good figure, just in 

case 

11



• Maps have their own built-in coordinate systems 
• Longitude and Latitude 

• So does the screen 
• X & Y pixel coordinates 

• How do we convert between them? 
• Screen to map: 

• Location loc = map.getLocation(mouseX, mouseY);
• println(“Lat/Lon of mouse is” + loc.getLon() + “,” + 
loc.getLat());

• Map to screen: 
• ScreenPosition pos = map.getScreenPosition(loc);
• println(“X,Y coords of location “ + loc + “ are “ + 
pos.x + “,” + pos.y);

12

Screen Coordinates and Mouse 
Coordinates



• Lots of different ways to use markers. Here’s one 
simple way: 
• Location berlinLoc = new Location(52.5, 
13.4);

• SimplePointMarker berlinMarker =  
      new SimplePointMarker(berlinLoc);

• map.addMarkers(berlinMarker);
• Uses the default marker style. 
• The map automatically manages drawing markers 

that have been added to it.

13

Using Markers



• Some basic properties can be set directly 
on the markers themselves: 
berlinMarker.setColor(color(255,	0,	0,	100));	
berlinMarker.setStrokeColor(color(255,	0,	0));	
berlinMarker.setStrokeWeight(4);

14

Styling Markers



• Rather than have the marker automatically drawn, 
you can draw it yourself 
• Don’t add it to the map… 
• … you’re just using it as a way to keep track of 

the place. 
void	draw()	{	
		map.draw();	
		
		ScreenPosition	berlinPos	=	berlinMarker.getScreenPosition(map);	
		strokeWeight(16);	
		stroke(67,	211,	227,	100);	
		noFill();	
		ellipse(berlinPos.x,	berlinPos.y,	36,	36);	
}

15

Styling Markers - Advanced 
Method


