
Exploring Processing

CS 6452: Prototyping Interactive Systems

What is Processing?

• Easy-to-use programming environment
• Let’s you edit, run, save, share all in one

application
• Designed to support interactive, visual applications

• Something we’ve been missing so far in Python…
• Simplified Java-like syntax (in its default form)

• Other languages available via plugins
• Useful for Arduino micro controller programming via

special libraries (“Wiring”)

2

PROCESSING.ORG
First stop…

3

CS 6452: Prototyping Interactive Systems

The Processing Development Environment

4

CS 6452: Prototyping Interactive Systems

API for graphics, interactivity, etc.

5

CS 6452: Prototyping Interactive Systems

Getting started with Processing

6

• Programs are called “sketches” in Processing’s
terminology

• Saved in the “sketchbook”

• Enter our first Processing program:

• line(10, 10, 50, 50);

• NOTE the semicolon!!

CS 6452: Prototyping Interactive Systems

Getting started with Processing

7

size(400, 400); // set the window size
background(192, 64, 0); // background color
stroke(255); // pen color to white
line(100, 25, 250, 350); // X1, Y1, X2, Y2

CS 6452: Prototyping Interactive Systems

Colors in Processing

8

Lots of variants for controlling color:

 stroke(255); // sets the stroke color to white
 stroke(255, 255, 255); // identical to the line above
 stroke(255, 128, 0); // bright orange (red 255, green 128, blue 0)
 stroke(#FF8000); // bright orange as a web color
 stroke(255, 128, 0, 128); // bright orange with 50% transparency

By default, colors are specified in the range 0-255 (8 bits
for each of R, G, and B

Same variants work for fill(), background(), …

Functions that affect drawing properties affect all objects
drawn to the screen until the next fill, stroke, etc.

See Tools > Color Selector

CS 6452: Prototyping Interactive Systems

More Simple Graphics

9

Drawing something a little more complicated…

background(173, 216, 230);
stroke(0);
fill(120,82,82);
size(300, 300);
rect(100, 200, 100, 80);
triangle(100, 200, 200, 200, 150, 100);
fill(255);
textSize(32);
textAlign(CENTER);
text("TECH", 150, 200);

CS 6452: Prototyping Interactive Systems

A note on coordinates…

10

CS 6452: Prototyping Interactive Systems

Moving Beyond Static Sketches

• Programs that are simple lists of
statements are called static sketches
• No animation, no interaction

• Interactive programs are drawn as a series
of frames.
• Add functions setup() and draw() -

these will be called automatically

11

CS 6452: Prototyping Interactive Systems

Example

12

void setup() {
 size(400, 400);
 stroke(255);
 background(192, 64, 0);
}

void draw() {
 line(150, 25, mouseX, mouseY);
}

Note Java-style curly braces and declaration of
return parameter (void) !

Called once.
size() should be
the first line inside

Called
repeatedly.

CS 6452: Prototyping Interactive Systems

Example (cont’d)

13

How would you change this so that you don’t
have multiple lines drawn over the top of each other?

CS 6452: Prototyping Interactive Systems

More complicated event handling

14

void setup() {
 size(400, 400);
 stroke(255);
 background(192, 64, 0);
}

void draw() {
 line(150, 25, mouseX, mouseY);
}

void mousePressed() {
 background(192, 64, 0);
}

CS 6452: Prototyping Interactive Systems

More Simple Graphics: Text

15

PFont myFont;

void setup() {
myFont = createFont("Georgia", 32);

}

void draw() {
textFont(myFont);
textAlign(CENTER, CENTER);
text("Hello, World!", width/2, height/2);

}

NOTE special variables width, height
PFont is the type of a Processing font object

CS 6452: Prototyping Interactive Systems

Interactivity in Processing

16

Special variables mouseX and mouseY contain
the coordinates of the cursor relative to the origin

void setup() {
 size(100, 100);
 noStroke();
}

void draw() {
 background(126);
 ellipse(mouseX, 16, 33, 33); // Top circle
 ellipse(mouseX/2, 50, 33, 33); // Middle circle
 ellipse(mouseX*2, 84, 33, 33); // Bottom circle
}

Values set to 0,0 until the pointer enters the window

CS 6452: Prototyping Interactive Systems

Interactivity in Processing

17

pmouseX and pmouseY store the mouse values
from the previous frame

Programming challenge: write a program that draws
a stroke as the user moves the mouse around the
screen

CS 6452: Prototyping Interactive Systems

Programming challenge

18

Programming challenge: write a program that draws
a stroke as the user moves the mouse around the
screen

How do you stop the program from drawing the first
(bogus) segment from 0,0? Hint: maybe a conditional?

How would you change the program so that it only draws
when the mouse button is held down? Hint: special variable
mousePressed will be true when button is pressed.

CS 6452: Prototyping Interactive Systems

Event variables

19

mousePressed — will be true or false
mouseButton — will be LEFT, RIGHT, CENTER
keyPressed — true while key is actively being held down
key — holds a single alphanumeric character, the most  
recently pressed key (can draw to the screen using text()).
Can also be used as a numeric ASCII value (A=65, etc.).
Special values BACKSPACE, TAB, ENTER, RETURN, …
keyCode — if key == CODED, then keyCode contains
special key info: ALT, CONTROL, SHIFT, UP, DOWN, LEFT,
RIGHT

CS 6452: Prototyping Interactive Systems

Events

20

• An event is a type of function that’s called automatically by
Processing when a user input occurs. These functions “handle”
the user input.

• Sometimes called callbacks, event handlers, listeners, … in
other programming languages

• Called asynchronously: may happen at any time, may never
happen at all, outside the normal flow of control of your program

• More detailed answer: user inputs are queued until draw()
finishes, then the event functions are called to handle any
user inputs that occurred in the meantime

• The code inside the event function is run once, each time the
corresponding user input occurs

CS 6452: Prototyping Interactive Systems

Mouse Events

21

• mousePressed()
• mouseReleased()
• mouseMoved()
• mouseDragged()

• (mouseMoved() and mouseDragged() not called if the pointer stays
in the same place on the screen)

• How do these relate to the variables mousePressed, etc?
• Value of mousePressed is true until the button is released… can be

used within draw().
• mousePressed() function only runs once when a button is pressed…

useful for triggering actions.

CS 6452: Prototyping Interactive Systems

Dealing with Asynchrony

22

• In general:
• It’s not a good idea to draw inside an

event function: keep that code inside
draw()

• Why? Because any drawing you do inside
an event handler will get clobbered
whenever draw() is called next (unless you
have an empty draw() function).

CS 6452: Prototyping Interactive Systems

Dealing with Asynchrony (cont’d)

23

• So how would you draw something in response to mouse
events?

• Need to think about structuring your program a little
differently…

• Event handler functions record details about the new thing
that should be drawn…

• … draw() function then draws it the next time it is called.

• Commonly: event functions will set some variables indicating
what to draw, and your code in the draw function checks
these the next time through.

CS 6452: Prototyping Interactive Systems

Key Events

24

• Similar setup as mouse events:
• keyPressed()
• keyReleased()
• Can check value of key variable inside

these.

CS 6452: Prototyping Interactive Systems

Under the Hood…

25

• If your program has a draw() function, it’ll be called
60 times/second
• Use frameRate() to change

• noLoop() pauses the draw loop; loop() restarts it
• Event functions still get called when noLoop() is

in effect
• You rarely have to use these unless you’re doing

something weird
• Use redraw() to cause the code in draw() to be run

one time. Often called from within an event function

CS 6452: Prototyping Interactive Systems

More Processing: Strings

26

• String msg = “This is my string. There are
many like it but this one is mine.”
• (Remember variables have types that must

be declared)
• msg.length();
• String upper = msg.toUpperCase();

println(upper);
• (Strings are immutable, as in Python)

• Comparison: safest way is str1.equals(str2)

CS 6452: Prototyping Interactive Systems

More Processing: Strings

27

• Concatenation:
• String hw = “Hello” + “World”;
• int x = 10;  

String msg = “The value of x is” + x;
• Printing to the console (for debugging):

• println(msg);

CS 6452: Prototyping Interactive Systems

More Processing: Arrays

28

• Similar to Python lists, with a few important exceptions…
• Can (generally) only store homogenous data
• After declaring it, create it with the keyword new
• Fixed size

• int[] data;
• data = new int[3];
• data[0] = 19;
• data[1] = 42;
• data[2] = 101;
• OR, just int[] data = {19, 42, 101};

CS 6452: Prototyping Interactive Systems

More Processing: Arrays

29

• length, square-bracket notation, and
iteration

println(data.length);
data[0] = data[1] + data[2];

for (int i=0 ; i<data.length ; i++) {
 println(data[i]);
}

CS 6452: Prototyping Interactive Systems

More Processing: Arrays

30

• append() - creates and returns a new array with the
parameter date added

String[] trees = {“ash”, “oak”};
// INCORRECT! Doesn’t change the array
append(trees, “maple”);

// Create a new array, re-use trees to refer to it
trees = append(trees, “maple”);

printArray(trees);

