
Object-Oriented Programming in
Processing

CS 6452: Prototyping Interactive Systems

Object-Oriented Programming

• We’ve (kinda) been doing this since Day 1:
• Python is a deeply object oriented language
• Most of the data types we were using

(strings, list, dictionaries) were objects
• Now, going to shift gears to exploring more

about what objects are, how/when to use them
• Explore examples in Processing
• Much of this knowledge will be transferrable

when we start Java

2

“Objects”

• Objects are simply data+functionality, in a
self-contained unit

• In programming terms, objects have
• variables associated with them

(sometimes called instance variables or
member data)

• functions associated with them (called
methods)

3

“Classes”

• Classes are the blueprints for an object
• Think of them like a cookie cutter or a template
• Can create multiple copies from the pattern

• Each object that is created based on a class’s
blueprint is called an instance of that class

• (Classes are like the abstract description of the
thing that becomes an object)
• Class = cookie cutter
• Object/instance = cookie

4

Example

• Let’s say we want to write a program that moves a
car horizontally across the screen
• (We’ll just use a simple rectangle for the car to

make our job easier)
• What information will we need to keep track of for

our “car”?
• color, location (x & y), speed

• What functionality pertains to our “car”?
• Draw the car on the screen, change its location

based on its speed, initialize color/location/etc.

5

Doing it without OO (pseudocode)

• Global variables
• Car color
• Car X & Y location
• Car speed

• Setup code:
• Initialize car color
• Initialize car location to starting point
• Initialize car speed

• Draw code:
• Fill background
• Display car at current location, with current color
• Increment car’s location by speed

6

Doing it without OO
color c = color(0);
float x = 0;
float y = 100;
float speed = 1;

void setup() {
 size(200,200);
}

void draw() {
 background(255);
 move();
 display();
}

void move() {
 x = x + speed;
 if (x > width) {
 x = 0;
 }
}

void display() {
 fill(c);
 rect(x,y,30,10);
}

7

That’s a lot of stuff spread 
all over our program!
• In an OO development style:

• Take all of the variables and functions out of
the main program

• Put them inside a car object
• Car object keeps track of its data

• Color, location, speed
• Also handles “the stuff it can do” via methods

• Display it, drive it, etc.

8

Pseudocode for the new version

• Global variables in our program:
• The car object

• Setup code:
• Initialize the car object

• Draw code:
• Fill the background
• Display the car object
• Drive the car object

9

Code for the new version
Car myCar;

void setup() {
 myCar = new Car();
}

void draw() {
 background(255);
 myCar.drive();
 myCar.display();
}

• Simpler, and less to keep track of

10

Defining the class

• Before we can create a Car object, we have to
define its class!
• Write the “cookie cutter”

• All classes have four parts to them:
• The class’s name
• The data associated with the class (variables)
• A “constructor” function (run at initialization time)
• The functions associated with the class (its

methods)

11

12

Declaring and Using Objects
• Declaring a normal variable:

• int var;

• Declaring an object:

• Car car;

• Initializing a normal variable:

• var = 10;

• Initializing an object:

• car = new Car(); // use the “new” operator

• // this automatically runs the constructor

13

Putting it all together…
// Class definition
class Car {
 color c;
 float xpos;
 float ypos;
 float xspeed;

 Car() {
 c = color(0);
 xpos = width/2;
 ypos = height/2;
 xspeed = 1;
 }

 void display() {
 rectMode(CENTER);
 fill(c);
 rect(xpos, ypos, 20, 10);
 }

void drive() {
 xpos = xpos + xspeed;
 if (xpos > width) {
 xpos = 0;
 }
 }
}

// Main code
Car myCar;

void setup() {
 size(200,200);
 myCar = new Car();
}

void draw() {
 background(255);
 myCar.drive();
 myCar.display();
}

14

Haven’t we just moved the code around?

• Well… yeah.
• But this version is still better:

• Once we get Car working, we can forget about it
• CS concept: “encapsulation” - treat the code as a

“black box” without having to worry about how it
works

• Each instance is isolated from every other instance
• We can add new cars with only minor changes to the

code!
• Think about what a mess this would be with our

original, non-OO version

15

Multiple cars
Car myCar1;
Car myCar2; // Two objects!

void setup() {
 size(200,200);
 // Parameters go inside the parentheses when the object is constructed.
 myCar1 = new Car(color(255,0,0),0,100);
 myCar2 = new Car(color(0,0,255),0,10);
}

void draw() {
 background(255);
 myCar1.drive();
 myCar1.display();
 myCar2.drive();
 myCar2.display();
}

16

Parameters in constructors

• To make the above code work we need
our cars to look different

• Can add parameters to our constructors,
used to initialize different cars differently

 Car(color tempC, float tempXpos, float tempYpos) {
 c = tempC;
 xpos = tempXpos;
 ypos = tempYpos;
 }

17

Constructor parameters can be confusing

18

Scoping rules
• Remember “scoping” just means what variables are visible from

where, in a program.
• Parameter variables names are only visible within the function

that uses them
• Variables defined within a function are only visible within that

function
• Object instance variables are visible anywhere in that instance

(i.e., from any function in that object)
• Each object’s instance variables are separate from each others

• Even if you use the “cookie cutter” to stamp out multiple
cookies, each one’s data is separate

• Even though the variable names are the same for all objects
of the class.

19

Objects are data
• Once you create a class, you’re defining a new data type (just like integers,

strings, etc.)
• Objects can contain other objects!

• Just include it in the Class definition
 class Garage {
 Car car1, car2;

 }
• Objects can be passed as arguments to functions, just like other data.
• One difference:

• When “simple” data types are passed in to a function, a copy is made of
them. Changes to the data inside the function don’t affect the copy
outside.

• With objects, a “reference” is passed in. Changes to the object inside
the function do affect the original.

20

Programming Challenge

1. Update the Car class
• Change the way the car is drawn (add

some graphics for a passenger, for
instance)

• Add a speed variable, and use that to
control the speed of the car when it drives

2. Use an array of cars to allow more cars in
your program, without needing to keep
separate variables for each

21

