
Introduction to Python 
(All the Basic Stuff)

1

Learning Objectives

● Python program development
● Command line, IDEs, file editing

● Language fundamentals
● Types & variables
● Expressions
● I/O
● Control flow
● Functions & scoping

2

Python Environment

● You’ve gotten Python on your machine

● Run from command line 
 OR

● Use an Integrated Development Environment (IDE)

3

Command Line (Windows)

4

Windows command shell

Python command

Command Line (Mac)

5

IDLE IDE

6

Other Python IDEs

● Pydev (Eclipse)
● PyCharm
● Wing
● Spyder Python
● …

7

Creating/Editing Programs

● Text editor: Notepad, WordPad, Sublime text, Emacs, …

8

Doesn’t work 
ie, not interactive

Running Programs

9

Running an existing file

Tips & tricks (Windows)

10

Shift right click in background of window  
to get menu with  
“Open command window here” 
operation

Then run  
python foobar.py

Types, Variables

● int, float, str

● No variable declarations
● Weakly typed language

● x = 1  
x = “hello”  
print x

● Boolean values True and False

11

Math Expressions

● +, -, *, /, %, **  
(% - remainder, ** - exponentiation)  
 
 
5 % 3 is  
3 / 2 is  
3 / 2.0 is  
 

● Assignment statements 
 
x = (a + 10) * (b**3 / d * f)  
tax = tax + .01

12

Type Conversions

● You have two integers a and b 
You want a/b (the floating point value)  
 
a / float(b)

● Mixed type expression, the integer is converted to a float:  
 
17.5 / 6

13

Output

14

print ‘Hello’  
print “Hello”  
print distance  
print a, b  
print “The value is “, val  
 
print a, Suppresses the newline

Version 3

print(‘Hello’)  
print(a, b)  
print(a, end=“ “)

Suppresses the newline

Input (Python 2)

● Reading strings 
 
firstName = raw_input(‘Enter your first name’)

● Reading numbers 
 
age = input(‘How old are you?’)

15

Input (Python 3)

● Reading strings 
 
firstName = input(‘Enter your first name’)

● Reading numbers 
 
age = eval(input(‘How old are you?’))

16

Intermission

● Admin stuff

17

Control Flow

● Not all programs are “straight line”
● Conditional statements
● Iteration
● Functions and procedures

18

Conditional Expressions

● Conditionals: if 
if x == 1:  
 print "X is one"  
elif x == 0:  
 print "X is zero"  
else:  
 print "X is something else"

19

Indentation

● Blocks are denoted by exact indentation

20

if x == 10:
 a = b * 5
 print “Hello”
 y = y + 1  
print a, b

A source of headaches…

What is X after the code runs?
x = 7

if x > 22:

 x = 5

elif x <= 7:

 x = x*3

elif x == 21:

 x = x*2

print(x)

1. 5
2. 7
3. 21
4. 42
5. I have no idea

21

Iteration - while

● General form: while <test>: will continue to iterate as long as <test>
is true (not 0 or none)

● Special keywords to control looping
● break - jumps out of the loop

● continue - jumps back to the top of the loop (the while statement)

22

x = 15
while x > 0:

print x
x = x - 1

Watch that indentation!

Iteration - for

● General form: the for statement iterates over a sequence of items,
such as a list

23

for x in range(5):
 print x
 prints 0, 1, 2, 3, 4

for x in range(2, 5):
 print x
 prints 2, 3, 4

for x in [“spam”, “eggs”, “ham”]:
 print x
 prints spam, eggs, ham

What is z after the code runs?
x = 5
z = 0
for x in range(5):
 y = 6
 if x == 3:
 break
 while y > 0:
 y = y - 1
 z = z + 1

print(z)

1. 0
2. 18
3. 24
4. 64
5. I have no idea

24

Exercise

● Write a program that:  
  
Takes integer input from the user, until -1 is entered  
Calculates and prints the average of those numbers  
 (excluding the -1)

25

Functions

● It’s helpful to break your code into smaller pieces that each do
some specific function or operation
● Can test each one individually

● Makes debugging easier

● Python uses the  
 def fct_name():  
 statement  
 statement  
 etc  
 return expression  
syntax

26

Example

● def sum(num1, num2):  
 result = num1 + num2  
 return result  
 
Elsewhere in code  
 
a = 3  
b = 12  
c = sum(a,b)

27

Modularity

● We typically have multiple functions in a file
● Name one main as the “starter”

● Call it to get things going

28

Example

29

def main():  
 code goes here  
 
def fct1():

 code goes here  
 
def fct2():

 code goes here  
 
…

main()

Random Numbers

● Built-in functions for that

● import random  
 
number = random.randint(1, 100)  
 
Gives random integer between 1 and 100, inclusive

● number = random.uniform(1.0, 10.0)  
 
Gives random float between 1.0 and 10.0

30

Modules

● Each separate file is called a module
● Usually contains a set of related functions that provide some useful

operations
● You then import these modules
● When you downloaded Python, you got a bunch of them

● random, math

31

Scoping

● What is scoping?
● Scoping is a fancy word that just means “the rules about what you

can see from where” in a program
● The namespace is the collection of stuff that you can see from any

given point in a program

32

An Example Scoping Error

33

welcomeMsg = “Hello!”  
def changeWelcomeMsg():  
 welcomeMsg = “Bonjour!“  
 print “New welcome
message is”, welcomeMsg

 
changeWelcomeMsg()  
>>> New welcome message is
Bonjour!  
print welcomeMsg  
Hello!

WHY?

An Example: Scoping Error

● welcomeMsg = “Hello!”

● def changeWelcomeMsg():

● welcomeMsg = “Bonjour!”

● print “New welcome message is”, welcomeMsg

● changeWelcomeMsg()

● >>> New welcome message is Bonjour!

● print welcomeMsg

● “Hello!”

welcomeMsg is defined in the
global scope

This lines defines a new variable
with the same name, in the local scope!

Since this call to print is outside the
function changeWelcomeMsg(), it
refers to the welcomeMsg variable in
the global scope.

34

Thinking About Scopes

global scope

func1 local scope

func2 local scope

func3 local scope

● Variables named in the global scope
are available to statements in any
scope
● Unless they have been “hidden” by a

local variable with the same name, as
in the error example

● Variables named in a local scope are
only available to statements in that
scope

● The first assignment to a variable
determines the scope it is in

35

More on Scopes

● “Global” really means the file the variable is in
● When you start developing with multiple files, each file defines its own

scope that is “global” for that file

● Each call to a function creates a new local scope
● Thus if a variable foo is defined in function func(), each call to func() has

its own new “namespace” and its own separate foo

● By default, all assignments that you make in a function create names
in the local scope
● Advanced: you can use the global statement if you want to change a

global variable from within a function
● Dangerous, but useful. We’ll talk about it in a later lecture

● Names not assigned to in a function are assumed to be globals
36

Still More on Scopes

● What all this boils down to is...
● Local variables (those first assigned to within a function) serve as

temporary names you need only when a function is running

● This helps modularity of your program (”hide” details within a
function)

● But:
● You need to be careful when using a name within a function that’s

defined outside

● Subtle and hard to track bugs...

● Just don’t do it

37

A common bug

def print0to9():
 maxmum = 10
 for i in range(maximum):
 print(i)

maximum = 5
for i in range(1,maximum):
 print(i)
print0to9()

38

Scoping Gotchas

● Subtly different than some other languages

● 1. Local scopes don’t nest

def outerfunc(x, y):
 def innerfunc(z):
 if z > 0:
 print x, y
 innerfunc(x)
● x and y aren’t available inside the local scope for innerfunc

● 2. There are actually three scopes: global, local, and __builtin__
● First, the local scope is checked

● Then, the global scope
● Finally, the scope defined by the module called __builtin__

● len, abs, max, min, ...

39

More Administratia

● Late policy for assignments:
● Clear with me first if you have a valid excuse for missing a due date

● Examples: medical or family emergency

● My policy is -10% per late day, maximum 3 days late

40

