
Introduction to Python 
(All the Basic Stuff)
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Learning Objectives

● Python program development
● Command line, IDEs, file editing

● Language fundamentals
● Types & variables
● Expressions
● I/O
● Control flow
● Functions & scoping
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Python Environment

● You’ve gotten Python on your machine

● Run from command line 
     OR

● Use an Integrated Development Environment (IDE)
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Command Line (Windows)
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Windows command shell

Python command



Command Line (Mac)
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IDLE IDE
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Other Python IDEs

● Pydev (Eclipse)
● PyCharm
● Wing
● Spyder Python
● …

7



Creating/Editing Programs

● Text editor: Notepad, WordPad, Sublime text, Emacs, …
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Doesn’t work 
ie, not interactive



Running Programs

9

Running an existing file



Tips & tricks (Windows)
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Shift right click in background of window  
to get menu with  
“Open command window here” 
operation

Then run  
python foobar.py



Types, Variables

● int, float, str 

● No variable declarations
● Weakly typed language

● x = 1  
x = “hello”  
print x 

● Boolean values True and False
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Math Expressions

● +, -, *, /, %, **  
(% - remainder, ** - exponentiation)  
 
 
5 % 3 is  
3 / 2 is  
3 / 2.0 is  
 

● Assignment statements 
 
x = (a + 10) * (b**3 / d * f)  
tax = tax + .01
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Type Conversions

● You have two integers a and b 
You want a/b  (the floating point value)  
 
a / float(b) 

● Mixed type expression, the integer is converted to a float:  
 
17.5 / 6
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Output
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print ‘Hello’  
print “Hello”  
print distance  
print a, b  
print “The value is “, val  
 
print a, Suppresses the newline

Version 3

print(‘Hello’)  
print(a, b)  
print(a, end=“ “)

Suppresses the newline



Input  (Python 2)

● Reading strings 
 
firstName  = raw_input(‘Enter your first name’) 

● Reading numbers 
 
age = input(‘How old are you?’)
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Input  (Python 3)

● Reading strings 
 
firstName  = input(‘Enter your first name’) 

● Reading numbers 
 
age = eval(input(‘How old are you?’))
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Intermission

● Admin stuff
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Control Flow

● Not all programs are “straight line”
● Conditional statements
● Iteration
● Functions and procedures
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Conditional Expressions

● Conditionals:  if 
if x == 1:  
    print "X is one"  
elif x == 0:  
    print "X is zero"  
else:  
    print "X is something else"
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Indentation

● Blocks are denoted by exact indentation
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if x == 10:
    a = b * 5
    print “Hello”
    y = y + 1  
print a, b

A source of headaches…



What is X after the code runs?
x = 7 

if x > 22: 

   x = 5 

elif x <= 7: 

   x = x*3 

elif x == 21: 

   x = x*2 

print(x)

1. 5
2. 7
3. 21
4. 42
5. I have no idea
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Iteration - while

● General form:  while <test>: will continue to iterate as long as <test> 
is true (not 0 or none)

● Special keywords to control looping
● break - jumps out of the loop

● continue - jumps back to the top of the loop (the while statement)
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x = 15
while x > 0:

print x
x = x - 1

Watch that indentation!



Iteration - for

● General form: the for statement iterates over a sequence of items, 
such as a list
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for x in range(5):
   print x                                         
                  prints 0, 1, 2, 3, 4

for x in range(2, 5):
   print x                                   
                  prints 2, 3, 4

for x in [“spam”, “eggs”, “ham”]:
   print x                                    
                  prints spam, eggs, ham



What is z after the code runs?
x = 5 
z = 0 
for x in range(5): 
    y = 6 
    if x == 3: 
        break 
    while y > 0: 
        y = y - 1 
        z = z + 1 

print(z)

1. 0
2. 18
3. 24
4. 64
5. I have no idea
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Exercise

● Write a program that:  
  
Takes integer input from the user, until -1 is entered  
Calculates and prints the average of those numbers  
     (excluding the -1)
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Functions

● It’s helpful to break your code into smaller pieces that each do 
some specific function or operation
● Can test each one individually

● Makes debugging easier

● Python uses the  
    def fct_name():  
     statement  
     statement  
     etc  
     return expression  
syntax
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Example

● def sum(num1, num2):  
    result = num1 + num2  
    return result  
 
Elsewhere in code  
 
a = 3  
b = 12  
c = sum(a,b)
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Modularity

● We typically have multiple functions in a file
● Name one main as the “starter”

● Call it to get things going
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Example
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def main():  
   code goes here  
 
def fct1():

   code goes here  
 
def fct2():

   code goes here  
 
…

main()



Random Numbers

● Built-in functions for that

● import random  
 
number = random.randint(1, 100)  
 
Gives random integer between 1 and 100, inclusive

● number = random.uniform(1.0, 10.0)  
 
Gives random float between 1.0 and 10.0
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Modules

● Each separate file is called a module
● Usually contains a set of related functions that provide some useful 

operations
● You then import these modules
● When you downloaded Python, you got a bunch of them

● random, math
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Scoping

● What is scoping?
● Scoping is a fancy word that just means “the rules about what you 

can see from where” in a program
● The namespace is the collection of stuff that you can see from any 

given point in a program
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An Example Scoping Error
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welcomeMsg = “Hello!”  
def changeWelcomeMsg():  
    welcomeMsg = “Bonjour!“  
    print “New welcome 
message is”, welcomeMsg 

 
changeWelcomeMsg()  
>>> New welcome message is 
Bonjour!  
print welcomeMsg  
Hello!

WHY?



An Example: Scoping Error

● welcomeMsg = “Hello!” 

● def changeWelcomeMsg(): 

● welcomeMsg = “Bonjour!” 

● print “New welcome message is”, welcomeMsg 

● changeWelcomeMsg() 

● >>> New welcome message is Bonjour! 

● print welcomeMsg 

● “Hello!”

welcomeMsg is defined in the
global scope

This lines defines a new variable
with the same name, in the local scope!

Since this call to print is outside the
function changeWelcomeMsg(), it
refers to the welcomeMsg variable in
the global scope.
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Thinking About Scopes

global scope

func1 local scope

func2 local scope

func3 local scope

● Variables named in the global scope 
are available to statements in any 
scope
● Unless they have been “hidden” by a 

local variable with the same name, as 
in the error example

● Variables named in a local scope are 
only available to statements in that 
scope

● The first assignment to a variable 
determines the scope it is in
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More on Scopes

● “Global” really means the file the variable is in
● When you start developing with multiple files, each file defines its own 

scope that is “global” for that file

● Each call to a function creates a new local scope
● Thus if a variable foo is defined in function func(), each call to func() has 

its own new “namespace” and its own separate foo

● By default, all assignments that you make in a function create names 
in the local scope
● Advanced: you can use the global statement if you want to change a 

global variable from within a function
● Dangerous, but useful.   We’ll talk about it in a later lecture

● Names not assigned to in a function are assumed to be globals
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Still More on Scopes

● What all this boils down to is...
● Local variables (those first assigned to within a function) serve as 

temporary names you need only when a function is running

● This helps modularity of your program (”hide” details within a 
function)

● But:
● You need to be careful when using a name within a function that’s 

defined outside

● Subtle and hard to track bugs...

● Just don’t do it
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A common bug

def print0to9(): 
    maxmum = 10 
    for i in range(maximum): 
        print(i) 

maximum = 5 
for i in range(1,maximum): 
    print(i) 
print0to9()
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Scoping Gotchas

● Subtly different than some other languages

● 1. Local scopes don’t nest

def outerfunc(x, y): 
    def innerfunc(z): 
        if z > 0: 
            print x, y 
    innerfunc(x) 
● x and y aren’t available inside the local scope for innerfunc

● 2. There are actually three scopes: global, local, and __builtin__
● First, the local scope is checked

● Then, the global scope
● Finally, the scope defined by the module called __builtin__

● len, abs, max, min, ...
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More Administratia

● Late policy for assignments:
● Clear with me first if you have a valid excuse for missing a due date

● Examples: medical or family emergency

● My policy is -10% per late day, maximum 3 days late
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