
Java Object-oriented
Programming 1

CS 6452: Prototyping Interactive Systems

HWs Redux

• HW 3
• HW 4

2

CS 6452: Prototyping Interactive Systems

Learning Objectives

• Java classes and objects
− Instance data
− Methods
− Constrcutors
− Visibility
− Scope
− Static

3

CS 6452: Prototyping Interactive Systems

Modeling Objects

• Car
− General attributes: year, color, VIN #,

horsepower, speed, mpg, …
− Behaviors: drive, brake, wash, park

• Individual instances of a car
− Hayley’s, Larry’s, …

4

CS 6452: Prototyping Interactive Systems 5

class Car

int year;
double mpg;
Color col;
…

drive()

wash()

main()

park()

Data 
declarations

Methods

A class is a “type”

All class members
- Data (instance vars)
- Methods

CS 6452: Prototyping Interactive Systems

Instance Data

• Put values inside class but not in method
• Each object that gets instantiated for a

class receives its own copy of them
• Variables are automatically initialized, but

good practice to do it manually (in
constructor)

6

CS 6452: Prototyping Interactive Systems 7

Car c1 = new Car();

Use the new operator to 
create an instance

Access fields through the  
. operator

c1.year
c1.vin
c1.mpg
c1.col
c1.speed

c1

year

vin

mpg

col

speed

CS 6452: Prototyping Interactive Systems

Methods

• Functions/procedures (behaviors) within a
class

• When we do c1.drive(20); control
flows to method, through it, then returns

8

public double drive(int time) {
 double distance;

 distance = time * speed;
 return distance;
}

CS 6452: Prototyping Interactive Systems

Methods

• return statement – Control immediately
goes back (need not be at end of method)

• Local variables – declared inside a method
and only visible there (e.g., distance)

9

public double drive(int time) {
 double distance;

 distance = time * speed;
 return distance;
}

CS 6452: Prototyping Interactive Systems

Methods

• Other code

• The method drive returns a double that
added to 100.0 and copied into total

10

public double drive(int time) {
 double distance;

 distance = time * speed;
 return distance;
}

double total;
total = 100.0 + c1.drive(24);

CS 6452: Prototyping Interactive Systems

Methods

• Parameters – values passed in to method
− Formal params – Names of params in header
− Actual params – Values passed in when running

• Formal params are just local variables
literally

11

public double drive(int time) {
 double distance;

 distance = time * speed;
 return distance;
}

CS 6452: Prototyping Interactive Systems

Methods

• At execution time, values copied into
formal parameters

• Parameters passed in call by value method

12

int a;
a = 12;
total = 100.0 + c1.drive(a+3);

// elsewhere

 public double drive(int time) {
 time = 1;
 return time;
 }

CS 6452: Prototyping Interactive Systems

Methods

• Nothing in front of speed
• Which speed?

• The instance variable within the object
upon which this method was called

13

public double drive(int time) {
 double distance;

 distance = time * speed;
 return distance;
}

CS 6452: Prototyping Interactive Systems

Methods

14

double d;
Car c3 = new Car();
d = c3.drive(50);
 // in this case, it uses c3’s speed

Other code

It’s like

or

or

distance = time * <thecallingobject>.speed;

distance = time * (c3).speed;

distance = time * this.speed;

CS 6452: Prototyping Interactive Systems

Methods

• this – java reserved word used inside
methods
− It refers to object upon which method was

invoked

• These type of method calls always
performed in the context of an object

15

distance = time * this.speed;

CS 6452: Prototyping Interactive Systems

Example Program

• RollingDice
− chap 4

16

CS 6452: Prototyping Interactive Systems

Encapsulation

• Objects should be responsible for
themselves

• Don’t want outsiders modifying instance
data

• Specify certain methods for outsiders
(other classes) to use
− Called the class interface

17

CS 6452: Prototyping Interactive Systems 18

class Car

int year;
double mpg;
Color col;
…

instance data

client
interface externally used methods

internally used methods

CS 6452: Prototyping Interactive Systems

Visibility

• How do we specify what is externally
visible?
− Use modifiers

• Visibility modifiers – Control access
− public, private, protected

19

outsiders only in 
class

(later)

CS 6452: Prototyping Interactive Systems

Access

20

public

variables

methods

private

X natural

service  
to clients

internal 
class support

Class has access to all private members

CS 6452: Prototyping Interactive Systems 21

public class Car
{
 private int vin,year;
 private double speed, mpg;

 public void drive() {
 …
 }

 public int getYear() {
 return year;
 }

 public void setYear(int y) {
 year = y;
 }

 public Car() {
 …
 }

 private void diagnose() {
 …
 }

 public static void main (String[] args)
 { … }
}

Internal method

“Accessor” method

“Modifier” method

Constructor

CS 6452: Prototyping Interactive Systems

Constructor

• Special method called when objects are
instantiated

• Same name as the class
• Their primary use is to initialize instance

variables

22

CS 6452: Prototyping Interactive Systems

Constructors

• What if we did

23

public Car(int y, double s, double m) {
 year = y;
 speed = s;
 mpg = m;
}

public Car(int year, double speed, double mpg) {
 year = year;
 speed = speed;
 mpg = mpg;
}

CS 6452: Prototyping Interactive Systems

Constructors

• How to correct that?

24

public Car(int year, double speed, double mpg) {
 this.year = year;
 this.speed = speed;
 this.mpg = mpg;
}

CS 6452: Prototyping Interactive Systems

Variable Scope

• What is the scope of a variable?
− Region of a program where it's visible

• Formal parameter
− The method in which it is a parameter

• Local variable
− The method in which it is defined

• Instance variable
− Entire class

25

CS 6452: Prototyping Interactive Systems

Questions

• Legal?

• No, compile error
− Two local variable declarations of a

26

public void foo(int a) {
 int a;
 …
}

CS 6452: Prototyping Interactive Systems

Method Overloading

• Use of same method name with different
parameter lists to create multiple versions
of method

• How does it know which is called?
− Looks at call and matches
− c1.drive(5, 23.4);

27

public int drive(int a) {
 …
}

public int drive(int a, double d) {
 …
}

CS 6452: Prototyping Interactive Systems

Example Program

• Account & Transactions
− chap 4

28

CS 6452: Prototyping Interactive Systems

Static Variables

• Another modifier
• So far, seen local vars and instance vars
• Another kind: static (class) variable

− One copy shared by all instances of class
− private static int count = 0;
− Memory space for it is in class, not instances
− Useful for object counters

29

CS 6452: Prototyping Interactive Systems

Example Program

• Slogan
− chap 6

30

CS 6452: Prototyping Interactive Systems

Static Methods

• Do not operate in the context of a
particular object (no this)
− So they cannot reference instance variables
− Typically worker functions, often mathematical

• Look at Slogan again
− static getCount() cannot access phrase

31

CS 6452: Prototyping Interactive Systems

null

32

public class Worker {
 private String name;
 private int id;

 public Worker(name, id) {
 this.name = name;
 this.id = id;
 }
}

Worker w1;
w1 = new Worker("Mary", 12);

After declaration, what is w1?
null

After instantiation:

w1

CS 6452: Prototyping Interactive Systems

Quiz

33

int x = 3;
int y = 7;
y = x;

Worker mary = new Worker("Mary", 3);
Worker jane = new Worker("Jane", 7);
jane = mary;

jane.id = 33;

System.out.println(mary.id);

mary

jane

Mary
3

Jane
7

CS 6452: Prototyping Interactive Systems

Quiz

34

int x = 3;
int y = 7;
y = x;

Worker mary = new Worker("Mary", 3);
Worker jane = new Worker("Jane", 7);
jane = mary;

jane.id = 33;

System.out.println(mary.id);

mary

jane

Mary
3

Jane
7

CS 6452: Prototyping Interactive Systems

Quiz

35

int x = 3;
int y = 7;
y = x;

Worker mary = new Worker("Mary", 3);
Worker jane = new Worker("Jane", 7);
jane = mary;

jane.id = 33;

System.out.println(mary.id);

mary

jane

Mary
33

Jane
7

CS 6452: Prototyping Interactive Systems

Example Program

• RationalNumber
− chap 6

36

CS 6452: Prototyping Interactive Systems

Learning Objectives

• Java classes and objects
− Instance data
− Methods
− Constrcutors
− Visibility
− Scope
− Static

37

CS 6452: Prototyping Interactive Systems

Next Time

• More with classes and OOP
− inheritance & hierarchies
− interfaces
− abstract classes
− dynamic binding

38

