
Java Object-oriented
Programming 2

CS 6452: Prototyping Interactive Systems

Learning Objectives

• Java
− Class design
− Inheritance
− Abstract classes
− Object class
− Interfaces
− Dynamic binding

2

CS 6452: Prototyping Interactive Systems

<Review>

3

CS 6452: Prototyping Interactive Systems 4

class Car

int year;
double mpg;
Color col;
…

instance data

client
interface externally used methods

internally used methods

CS 6452: Prototyping Interactive Systems

Access

5

public

variables

methods

private

X natural

service  
to clients

internal 
class support

Class has access to all private members

CS 6452: Prototyping Interactive Systems 6

public class Car
{
 private int vin,year;
 private double speed, mpg;

 public void drive() {
 …
 }

 public int getYear() {
 return year;
 }

 public void setYear(int y) {
 year = y;
 }

 public Car() {
 …
 }

 private void diagnose() {
 …
 }

 public static void main (String[] args)
 { … }
}

Internal method

“Accessor” method

“Modifier” method

Constructor

CS 6452: Prototyping Interactive Systems

Methods

• Nothing in front of speed
• Which speed?

• The instance variable within the object
upon which this method was called

7

public double drive(int time) {
 double distance;

 distance = time * speed;
 return distance;
}

CS 6452: Prototyping Interactive Systems

</Review>

8

CS 6452: Prototyping Interactive Systems

Special Method

• When Java tries to print an object, it
automatically calls toString() method

• What is printed is up to you

9

Car c1 = new Car(2004, 3247613237, "Audi", "5000");
System.out.println(c1);

// in Car class
public String toString() {
 return vin + " " + make + " " + model;
}

CS 6452: Prototyping Interactive Systems 10

Sample program 
layout

CS 6452: Prototyping Interactive Systems 11

Suppose ZooDriver's main is

main(--) {
 Person p = new Person();
 Tiger t = new Tiger();
 t.roar();

and Tiger's roar() is

roar() {
 go();

In Person's talk() method, can you
 - access name
 - access count
 - call foo()
 - call add()

In Person's static add() method, can you
 - access name
 - access count
 - call foo()
 - call add()

Why no object in front of go()?

CS 6452: Prototyping Interactive Systems

Inheritance

• Process of deriving a new class from an
existing one

• Automatically contains some or all of the
methods of original

• Can add new methods too
• Child can have only one parent class

12

CS 6452: Prototyping Interactive Systems

Inheritance

13

parent/super/base class
child/subclass keyword extends

is-a hierarchy

Vehicle

Car

CS 6452: Prototyping Interactive Systems

Inheritance

14

public class Vehicle {
 …
}

public class Car extends Vehicle {
 …
 // Car is-a vehicle
}

Vehicle can't access data or methods of Car

Car c2 = new Car(); // don't have to instantiate Vehicle
 // you get Vehicle data & methods too

CS 6452: Prototyping Interactive Systems

Inheritance

15

Child class can access public data/methods of parent
Child class cannot access public data/methods of parent
So???

protected – Can be accessed by child class but not outside classes

Child class can access parent's instance data and call 
parent's methods without qualification.
It's like they are yours. They actually are!

CS 6452: Prototyping Interactive Systems

Example

16

public class Person {
 protected int ssn;
 protected String name;
 …
}

public class GTStudent extends Person {
 protected int gt_id;
 protected int credithrs;
 …

 public void m1(int num) {
 if (num == ssn)
 …
}

CS 6452: Prototyping Interactive Systems

Inheritance

• Overriding – When child class defines a
method with same name as one in the
parent, child's version overrides the
parent's

17

public class Person {
 protected int ssn;
 protected String name;

 public void talk() {
 …
 }
}

public class GTStudent extends Person {
 protected int gt_id;
 protected int credithrs;
 …

 public void talk() {
 …
 }
}

CS 6452: Prototyping Interactive Systems

Inheritance

• Quiz
− Can you do

− Yes! (remember is-a)
− Can you do

− No! (not necessarily true)

18

Vehicle v1 = new Car();
Person p1 = new GTStudent();

Car c1 = new Vehicle();
GTStudent g1 = new Person();

CS 6452: Prototyping Interactive Systems

Inheritance

• Quiz

19

Person p1 = new GTStudent();
p1.talk();

Which talk() method is done, Person's or GTStudent's?

GTStudent's
That's really what's inside the p1 reference

Dynamic binding – Which method to perform is  
determined dynamically at run-time

CS 6452: Prototyping Interactive Systems

Abstract Class

• Vehicle class we showed before might be
abstract
− Not real, ie, you never really make one

20

public abstract class Vehicle {
 protected int year;
 protected Color col;

 public abstract void drive(); // Abstract method
}

Abstract method – Subclasses must provide (override) it or
be abstract themselves

CS 6452: Prototyping Interactive Systems

Abstract Class

• Can abstract class have non-abstract
methods?
− Yes!

21

public abstract class Vehicle {
 protected int year;
 protected Color col;

 public abstract void drive(); // Abstract method

 public int getYear() {
 return year;
 }
}

CS 6452: Prototyping Interactive Systems

Abstract class

• Abstract classes cannot be instantiated
with new()

22

Vehicle v1 = new Vehicle(); // Compile error

CS 6452: Prototyping Interactive Systems

Object class

• Object
− In java, all classes ultimately derived from it
− What's in it? Look in API
− Not an abstract class, a real one

23

CS 6452: Prototyping Interactive Systems

Interface

• Different type of construct in Java
− Not a class

• Set of abstract methods and constants

24

public interface Bank {
 public void deposit(double dep);
 public double withdrawl(double wd);
 public void audit();
}

All goes in Bank.java

CS 6452: Prototyping Interactive Systems

Interface

• A class implements an interface if it
provides all the methods of the interface
− Can have other methods too

• Interface is a contract or specification
− Lists set of services
− If class provides those services, then it

implements interface
− Class can implement more than one interface

25

public class MyMutual implements Bank { … }

CS 6452: Prototyping Interactive Systems

Interface

• What for?
− If a class you want to use implements an

interface, you know it has to provide those
methods

− Kind of a "guarantee"

26

CS 6452: Prototyping Interactive Systems

Scenario

27

Fish Bird Dog

Animal

Pet Store program

Animal is an abstract class
Others are real

CS 6452: Prototyping Interactive Systems

Scenario

28

public abstract class Animal {
 public void makeNoise() {
 System.out.println("I'm an animal");
 }
}

public class Fish extends Animal {
 public void makeNoise() {
 System.out.println("Glug glug");
 }
}

public class Bird extends Animal {
 public void makeNoise() {
 System.out.println("Tweet tweet");
 }
}

public class Dog extends Animal {
 public void makeNoise() {
 System.out.println("Woof woof");
 }

 public void bark() {
 System.out.println("Arf arf");
 }
}

Four classes

CS 6452: Prototyping Interactive Systems

Scenario

• Want to create a data structure to hold a
bunch of these different animals
− How to do it? What to use?

− An array – But how?

− Animal[] a = new Animal[100];

29

CS 6452: Prototyping Interactive Systems

Scenario

• Can you do

• Yes! A Fish is an Animal
• Same for

30

a[0] = new Fish();

a[1] = new Bird();
a[2] = new Dog();

CS 6452: Prototyping Interactive Systems 31

public class Driver
{
 public static void main(String[] args) {
 Animal[] a = new Animal[100];
 a[0] = new Bird();
 a[1] = new Fish();
 a[2] = new Dog();
 // …
 // We want to walk through them all
 // and have them make their noise

}

CS 6452: Prototyping Interactive Systems 32

public class Driver
{
 public static void main(String[] args) {
 Animal[] a = new Animal[100];
 a[0] = new Bird();
 a[1] = new Fish();
 a[2] = new Dog();
 // …
 // We want to walk through them all
 // and have them make their noise

 for (int i=0; i<a.length; i++) {
 if (a[i] is a Bird) //then

 else if (a[i] is a Fish) //then
 }
 // Will that work?

 // No!

}

CS 6452: Prototyping Interactive Systems 33

public class Driver
{
 public static void main(String[] args) {
 Animal[] a = new Animal[100];
 a[0] = new Bird();
 a[1] = new Fish();
 a[2] = new Dog();
 // …
 // We want to walk through them all
 // and have them make their noise

 for (int i=0; i<a.length; i++) {
 a[i].makeNoise();
 }

 // Will that work?

 // Yes!!!

}

CS 6452: Prototyping Interactive Systems 34

public class Driver
{
 public static void main(String[] args) {
 Animal[] a = new Animal[100];
 a[0] = new Bird();
 a[1] = new Fish();
 a[2] = new Dog();
 // …
 // We want to walk through them all
 // and have them make their noise

 for (int i=0; i<a.length; i++) {
 a[i].makeNoise();
 }

 // What if we wanted the Dog ones to bark() too?

 // Can we do
 a[i].bark();

 // No!!!! Not all a[i] are Dogs

}

CS 6452: Prototyping Interactive Systems 35

public class Driver
{
 public static void main(String[] args) {
 Animal[] a = new Animal[100];
 a[0] = new Bird();
 a[1] = new Fish();
 a[2] = new Dog();
 // …
 // We want to walk through them all
 // and have them make their noise

 for (int i=0; i<a.length; i++) {
 a[i].makeNoise();
 }

 // What if we wanted the Dog ones to bark() too?

 Dog d;
 if (a[i] instanceof Dog) {
 d = (Dog) a[i];
 d.bark();
 }

}

CS 6452: Prototyping Interactive Systems

Learning Objectives

• Java
− Class design
− Inheritance
− Abstract classes
− Object class
− Interfaces
− Dynamic binding

36

